#P3076. 「NOIP2017普及组」棋盘

「NOIP2017普及组」棋盘

Description

有一个m×mm \times m的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在要从棋盘的最左上角走到棋盘的最右下角。

任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上、 下、左、 右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你不需要花费金币;如果不同,则你需要花费 1 个金币。

另外, 你可以花费 2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个魔法不能连续使用, 而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走到了这个暂时有颜色的格子上,你就不能继续使用魔法; 只有当你离开这个位置,走到一个本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔法使得变为有颜色的格子)时,这个格子恢复为无色。

现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?

Input Format

数据的第一行包含两个正整数 mmnn,以一个空格分开,分别代表棋盘的大小,棋盘上有颜色的格子的数量。

接下来的 nn 行,每行三个正整数 xxyycc, 分别表示坐标为( x, y)的格子有颜色 c。

其中 c=1 代表黄色, c=0 代表红色。 相邻两个数之间用一个空格隔开。 棋盘左上角的坐标为( 1, 1),右下角的坐标为( m, m)。

棋盘上其余的格子都是无色。保证棋盘的左上角,也就是( 1, 1) 一定是有颜色的。

Output Format

输出一行,一个整数,表示花费的金币的最小值,如果无法到达,输出-1。

Sample

样例输入1

5 7
1 1 0
1 2 0
2 2 1
3 3 1
3 4 0
4 4 1
5 5 0

样例输出1

8

Hint

对于 30%的数据, 1m51 \le m \le 51n101 \le n \le 10

对于 60%的数据, 1m201 \le m \le 201n2001 \le n \le 200

对于 100%的数据, 1m1001 \le m \le 1001n1,0001 \le n \le 1,000