#P3005. 「NOIP2004」合并果子

「NOIP2004」合并果子

Description

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n1n-1 次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11 ,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 1291,2,9 。可以先将 121、2 堆合并,新堆数目为 33 ,耗费体力为 33。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。

Input Format

输入文件 fruit.infruit.in 包括两行。

第一行是一个整数 nn ,表示果子的种类数。

第二行包含 nn 个整数,用空格分隔,第 ii 个整数 aia_i1ai20,0001 \leq a_i \leq 20,000)是第 ii 种果子的数目。

Output Format

输出文件 fruit.outfruit.out 包括一行,这一行只包含一个整数,也就是最小的体力耗费值。

Sample

fruit.in

3
1 2 9

fruit.out

15

Hint

对于15%15\% 的数据,保证有 n1,000n \leq 1,000

对于25%25\% 的数据,保证有 n5,000n \leq 5,000

对于50%50\% 的数据,保证有 n10,000n \leq 10,000

对于100%100\% 的数据,保证有 n100,000n \leq 100,000